К основному контенту

ЕКСПЕРТНІ СИСТЕМИ ЯК ВИД СИСТЕМ ШТУЧНОГО ІНТЕЛЕКТУ

База знань є змістовною частиною банку знань, який необхідно розглядати як сховище знань, що являє собою у сукупності і самі знання і засоби, за допомогою яких здійснюється їх накопичення, збереження, оновлення та використання, а також засоби управління усіма цими процесами.
В системах штучного інтелекту і в експертних системах зокрема вирішуються, як правило, неформалізовані завдання. До них належать завдання, які мають одну або декілька наступних характеристик:
- завдання не можуть бути заданими в числовій формі;
- їх цілі не можуть бути відображені у термінах точно визначеної цільової функції;
- не існує алгоритмічного рішення завдань,
- алгоритмічне рішення існує, але його не можна використати через обмеженість ресурсів (час, пам'ять).
Експертні системи - одне з найбільш суттєвих практичних досягнень у галузі штучного інтелекту. Сфера їх застосування постійно поширюється, досягнуті значні результати при вирішенні реальних завдань. Вони обумовили велике зацікавлення експертними системами не тільки спеціалістів-теоретиків, але й практичних працівників у найрізноманітніших галузях людської діяльності. Причинами цього зацікавлення є: по-перше, ЕС орієнтовані на вирішення широкого кола завдань у неформалізованій галузі, що раніше вважалося мало доступним для обчислювальної техніки; по-друге, ЕС призначені для роботи фахівців, які не мають навичок програмування, що дає змогу поширення сфери використання обчислювальної техніки; по-третє, ЕС призначені для вирішення практичних завдань і при цьому дають результати, які не гірше, а часто навіть переважають ті, що може отримати людина-експерт, користуючись традиційними засобами. Найбільш високих результатів на цей час досягнуто при розробці та використанні ЕС , які реалізують таку інтелектуальну функцію, як дедукція.
ЕС поклали початок розвитку сукупності методів "інженерії знань" - технічних прийомів використання знань, які склали на час появи ЕС новий підхід до створення високоефективних програмних систем. Якщо при традиційному використанні ЕОМ процес обробки інформації полягає у виконанні програми, за такими технологіями - це отримання потрібних знань.
Загальні вимоги до організації процесу обробки інформації за інтелектуальними технологіями: вирішення завдання має розглядатися як подання користувачу потрібного знання; інформаційна потреба "споживача" у знаннях визначається як відсутність інформації для вирішення загального завдання у складі людино-машинної системи (ЛМС); хід вирішення завдання у будь-який проміжок часу оцінюється за станом системи знань обчислювальної системи. Отже, відмінна риса обробки знань полягає у корінній зміні людино-машинних відносин і становленню нового стилю вирішення проблем.
Світовий досвід створення експертних систем базується на дотриманні таких основних принципів їх розробки:
1. Потужність експертної системи обумовлена в першу чергу потужністю бази знань та можливістю її поповнення і тільки у другу чергу - методами (процедурами), які вона використовує. Раніше у дослідженнях у галузі штучного інтелекту панувала інша точка зору.
2. Знання, що дозволяють експерту (або експертній системі) отримувати якісні та ефективні рішення своїх завдань, є в основному евристичними, експериментальними, невизначеними, правдоподібними. Причинами цього є те, що ці завдання є неформалізованими або слабоформалізованими, а знання експертів мають індивідуальний характер, тобто властивий конкретній людині.
3. Враховуючи неформалізованість завдань, які вирішуються, та евристичний, особистосний характер знань, що при цьому використовуються, користувач (експерт ) повинен мати можливість безпосередньої взаємодії з експертною системою у діалоговій формі.
У зв'язку з тим, що основним джерелом потужності ЕС є знання, ці системи повинні мати здібності до набуття знань і характеризуватися такими головними властивостями:
1) ЕС обмежена визначеною сферою експертизи;
2) компетентність ЕС має бути не нижче рівня експерта-фахівця;
3) здатність до міркувань при сумнівних даних на основі символьних перетворень з використанням окремих та загальних схем міркувань;
4) здатність вирішувати реальні завдання у межах предметної галузі та надавати пояснення прийнятим рішенням зрозумілим способом;
5) факти та механізм виводу чітко розмежені одне від одного;
6) відкритість ЕС, тобто можливість нарощування системи;
7) ЕС базується на використанні правил і здатна переформульовувати запити та завдання;
8) здатність до метаміркувань (міркувань про свою роботу та структуру);
9) ЕС на виході надає пораду (не таблиці цифр, малюнки, а чітку пораду);
10) ЕС повинна бути економічно вигідною.
Особливості побудови і функціонування експертних систем розглянемо на прикладі системи продукційного типу. Така типова експертна система у своєму складі має такі компоненти (див. рис. 2):
- база знань , яка зберігає множину продукцій (у загальному випадку правил);
- робоча пам'ять, яка зберігає дані (база даних);
- інтерпретатор, який вирішує на основі знань, що є в системі, поставлене їй завдання;
- лінгвістичний процесор, який здійснює діалогову взаємодію з користувачем (експертом) на природній для нього мові;
- компонента надбання знань;
- пояснювальна компонента, яка дає пояснення діям системи та відповідає на питання, чому ті чи інші висновки були зроблені.
Основою кожної експертної системи є широкий запас знань про конкретну проблемну галузь. У більшості випадків ці знання організовані як деяка сукупність правил, які дозволяють робити висновки на основі вихідних даних або припущень. У відповідності з загальною схемою ЕС для її функціонування необхідні такі знання:
· знання про процес вирішення завдання (керуючі знання), які використовує інтерпретатор;
· знання про мову спілкування та способи організації діалогу, які використовує лінгвістичний процесор;
· знання про способи подання та модифікації знань, які використовує компонента надбання знань;
· підтримуючі структурні та керуючі знання, які використовує пояснювальна компонента.
Експертна система працює у двох режимах: у режимі надбання знань і у режимі вирішення завдань. У режимі надбання знань у спілкуванні з експертною системою приймає участь експерт (через інженера по знанням). У цьому режимі експерт наповнює систему знаннями (правилами), які дозволять їй у режимі рішення самостійно вирішувати завдання з галузі експертизи.
У режимі вирішення завдань у спілкуванні з ЕС приймає участь користувач, якого цікавить результат і (або) спосіб отримання рішення. Необхідно зазначити, що в залежності від призначення ЕС користувач може або не бути фахівцем у даній проблемній галузі (у цьому випадку він звертається до ЕС за порадою, тому що не вміє отримати відповідь сам), або бути фахівцем (у цьому випадку користувач може й сам отримати результат, але звертається до ЕС з метою прискорити процес отримання результату чи з метою покласти на ЕС рутинну роботу).
У режимі надбання знань експерт вводить у систему продукції про галузь експертизи. Продукції (у більш загальній трактовці правила) подаються на природній для користувача мові. Об'єднання знов введених продукцій з базою знань здійснюється компонентою надбання знань. Для того щоб переконатись у достатності знань (тобто переконатися у тому, що процес налагодження системи завершено), експерт перевіряє роботу системи на тестових прикладах. Якщо отриманий експертом результат його не задовольняє, то він за допомогою пояснювальної компоненти отримує відомості про те, яким чином був цей результат сформований і, при необхідності, вносить корективи у введені продукції (правила). По завершенні процесу налагодження система передається користувачам для експлуатації.
Функція компоненти надбання (засвоєння) знань полягає у підтримці процесу здобуття знань з вузько спеціалізованої предметної галузі. Звичайно, дані про предметну галузь мають уривчастий характер, слабко структуровані та погано формалізовані. Функції передачі знань від джерела до експертної системи виконуються інженерами по знанням. Це найбільш вузьке місце при створенні ЕС . Робляться спроби автоматизації цього процесу. Одним з найбільш простих способів є організація роботи експерта з використанням опитово-відповідальної системи. Сьогодні вже створені програми, які здатні навчатися як фактичним знанням про предметну галузь, так і знанням про стратегії вирішення завдань.
Зазначимо, що вдосконалення, внесені розробниками у сучасні системи управління базами даних, дозволяють використовувати їх при створенні експертних систем. При цьому СУБД використовують не тільки як системи, які забезпечують маніпулювання базою фактів, а навіть як інструментальні засоби побудови ЕС.

Комментарии

Популярные сообщения из этого блога